Contents
Preface 9
Chapter 1. On the concept of intuitionistic fuzzy sets 11
1.1. Definition of the concept of intuitionistic fuzzy set 11
1.2. Basic operations and relations over IFSs 13
1.3. IF implications and negations over IFSs 16
1.4. Definitions and properties of some
new IF subtractions 22
1.5. Geometrical interpretations of an IFS 24
1.6. On IF-interpretation of interval data 29
1.7. “Necessity” and “possibility” operators 30
1.8. Topological operators over IFSs 33
1.9. Extended topological operators 36
1.10. Weight-center operator over an IFS 40
1.11. Other extended topological operators over an IFS 41
1.12. On the first group of the extended modal
operators over IFSs 44
1.13. Operator Xatb;C;d;ej over IFSs 58
1.14. Partial extension of the extended modal
operators over IFSs 60
1.15. IFSs of certain level 62
1.16. Level type of operators over IFSs 66
1.17. Other types of modal operators over IFSs 70
1.18. Cartesian products over IFSs 80
1.19. Index matrix 84
1.20. Intuitionistic fuzzy relations 90
Chapter 2. Norms, distances, similarity measures
and applications 95
2.1. Standard IF-norms 95
2.2. Cantor’s IF-norms 100
2.3. Metrics and another point of view
on the notion intuitionistic fuzzy sets 101
2.3.1. Metrics, norms and subnorms 101
2.3.2. On a way for introducing metric in Cartesian product
of metric spaces 105
2.3.3. Metrics on 108
2.3.4. Metrics on Rn and Cn 109
2.3.5. Examples 110
2.3.6. Distances and similarity measures between
mtuitionistic fuzzy sets 111
2.3.7. Distances and pseudodistances over IFS(E') 112
2.3.8. Lebesgue integrals on finite sets 114
2.3.9. Distances between continuous IFSs 128
2.3.10. A modified Pompeiu-Hausdorff distance between
intuitionistic fuzzy sets 131
2.4. Similarity measures, induced by distances and pseudodistances
over IFS(E) 137
2.4.1. Generating new distances over IFS(JF) 140
2.4.2. Generating uncountably many similarity measures over
IFS(E) ” ' 144
2.5. A new distance on intuitionistic fuzzy sets 145
2.6. Metric introduction of IFS 148
2.6.1. Conforming, absolute conforming norms on M2 and their
properties 153
2.6.2. Alain result for dtp-IFS(E) 162
2.7. Application to the reassessment of expert
evaluation in the case of intuitionistic fuzzines 176
2.8. On introducing similar operators 184
2.9. Intuitionistic fuzzy histograms 192
Chapter 3. Intuitionistic fuzzy integrals 199
3.1. Intuitionistic fuzzy integrals
generated from extended Sugeno
and Choquet integrals 199
3.1.1. Basic ideas of generalized measure theory 199
3.1.2. Some properties of the extended Sugeno integrals 200
3.1.3. Intuitionistic fuzzy integrals and various
integral topological operators 208
3.1.4. Extended Choquet integral 216
3.1.5. Monotone measures defined
on intuitionistic fuzzy cr-algebras 225
3.1.6. Intuitionistic fuzzy Choquet integrals on finite sets 231
3.2. Some new relations between intuitionistic fuzzy sets 235
3.3. Repeated Choquet integral 243
3.3.1. The double repeated Choquet integral on finite sets 279
3.3.2. Intuitionistic fuzzy integrals
generated by Choquet integral 281
3.3.3. Intuitionistic fuzzy numbers 290